Helicoidal minimal surfaces in hyperbolic space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal translation surfaces in hyperbolic space

In the half-space model of hyperbolic space, that is, R+ = {(x, y, z) ∈ R ; z > 0} with the hyperbolic metric, a translation surface is a surface that writes as z = f(x) + g(y) or y = f(x) + g(z), where f and g are smooth functions. We prove that the only minimal translation surfaces (zero mean curvature in all points) are totally geodesic planes. MSC: 53A10

متن کامل

Hermite Polynomials And Helicoidal Minimal Surfaces

The main objective of this paper is to construct smooth 1-parameter families of embedded minimal surfaces in euclidean space that are invariant under a screw motion and are asymptotic to the helicoid. Some of these families are significant because they generalize the screw motion invariant helicoid with handles and thus suggest a pathway to the construction of higher genus helicoids. As a bypro...

متن کامل

Linear Weingarten Helicoidal Surfaces in Isotropic Space

Introduced in 1861 [1], a Weingarten surface in the Euclidean three-dimensional space E3 is a surface M, whose mean curvature H and Gaussian curvature K satisfy a non-trivial relation Φ(H, K) = 0. Such a surface was introduced by Weingarten. The class of Weingarten surfaces is remarkably large, and it consists of intriguing surfaces in the Euclidean space: the constant mean curvature surfaces, ...

متن کامل

Eigenvalue estimates for minimal surfaces in hyperbolic space

This paper gives an upper bound for the first eigenvalue of the universal cover of a complete, stable minimal surface in hyperbolic space, and a sharper one for least area disks.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 1989

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000001409